这个方法是在没有Math库的情况下使用的。
它的效率自然要比其它的逼近算法要快很多。
private final static int[] sqrtTab = {0, 16, 22, 27, 32, 35, 39, 42, 45, 48, 50, 53, 55, 57, 59, 61, 64, 65, 67, 69, 71, 73, 75, 76, 78, 80, 81, 83, 84, 86, 87, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 128, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 144, 145, 146, 147, 148, 149, 150, 150, 151, 152, 153, 154, 155, 155, 156, 157, 158, 159, 160, 160, 161, 162, 163, 163, 164, 165, 166, 167, 167, 168, 169, 170, 170, 171, 172, 173, 173, 174, 175, 176, 176, 177, 178, 178, 179, 180, 181, 181, 182, 183, 183, 184, 185, 185, 186, 187, 187, 188, 189, 189, 190, 191, 192, 192, 193, 193, 194, 195, 195, 196, 197, 197, 198, 199, 199, 200, 201, 201, 202, 203, 203, 204, 204, 205, 206, 206, 207, 208, 208, 209, 209, 210, 211, 211, 212, 212, 213, 214, 214, 215, 215, 216, 217, 217, 218, 218, 219, 219, 220, 221, 221, 222, 222, 223, 224, 224, 225, 225, 226, 226, 227, 227, 228, 229, 229, 230, 230, 231, 231, 232, 232, 233, 234, 234, 235, 235, 236, 236, 237, 237, 238, 238, 239, 240, 240, 241, 241, 242, 242, 243, 243, 244, 244, 245, 245, 246, 246, 247, 247, 248, 248, 249, 249, 250, 250, 251, 251, 252, 252, 253, 253, 254, 254, 255}; private static long adjustment(long x, long xn) { long xn2 = xn * xn; long comparitor0 = xn2 - x; if (comparitor0 < 0) { comparitor0 = -comparitor0; } long twice_xn = xn << 1; long comparitor1 = x - xn2 + twice_xn - 1; if (comparitor1 < 0) { comparitor1 = -comparitor1; } long comparitor2 = xn2 + twice_xn + 1 - x; if (comparitor0 > comparitor1) { return (comparitor1 > comparitor2) ? ++xn : --xn; } return (comparitor0 > comparitor2) ? ++xn : xn; } static long sqrt(long x) { long xn; if (x >= 0x10000) { if (x >= 0x1000000) { if (x >= 0x10000000) { if (x >= 0x40000000) { xn = sqrtTab[(int) (x >> 24)] << 8; } else { xn = sqrtTab[(int) (x >> 22)] << 7; } } else { if (x >= 0x4000000) { xn = sqrtTab[(int) (x >> 20)] << 6; } else { xn = sqrtTab[(int) (x >> 18)] << 5; } } xn = (xn + 1 + (x / xn)) >> 1; xn = (xn + 1 + (x / xn)) >> 1; return adjustment(x, xn); } else { if (x >= 0x100000) { if (x >= 0x400000) { xn = (long) sqrtTab[(int) (x >> 16)] << 4; } else { xn = (long) sqrtTab[(int) (x >> 14)] << 3; } } else { if (x >= 0x40000) { xn = (long) sqrtTab[(int) (x >> 12)] << 2; } else { xn = (long) sqrtTab[(int) (x >> 10)] << 1; } } xn = (xn + 1 + (x / xn)) >> 1; return adjustment(x, xn); } } else { if (x >= 0x100) { if (x >= 0x1000) { if (x >= 0x4000) { xn = sqrtTab[(int) (x >> 8)] + 1; } else { xn = (sqrtTab[(int) (x >> 6)] >> 1) + 1; } } else { if (x >= 0x400) { xn = (sqrtTab[(int) (x >> 4)] >> 2) + 1; } else { xn = (sqrtTab[(int) (x >> 2)] >> 3) + 1; } } return adjustment(x, xn); } else { if (x >= 0) { return adjustment(x, sqrtTab[(int) x] >> 4); } } } return -1; }