/* * Integer Square Root function * Contributors include Arne Steinarson for the basic approximation idea, Dann * Corbit and Mathew Hendry for the first cut at the algorithm, Lawrence Kirby * for the rearrangement, improvments and range optimization, Paul Hsieh * for the round-then-adjust idea, Tim Tyler, for the Java port * and Jeff Lawson for a bug-fix and some code to improve accuracy. * * * v0.02 - 2003/09/07 */ /** * Faster replacements for (int)(java.lang.Math.sqrt(integer)) */ public class SquareRoot { final static int[] table = { 0, 16, 22, 27, 32, 35, 39, 42, 45, 48, 50, 53, 55, 57, 59, 61, 64, 65, 67, 69, 71, 73, 75, 76, 78, 80, 81, 83, 84, 86, 87, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 128, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 144, 145, 146, 147, 148, 149, 150, 150, 151, 152, 153, 154, 155, 155, 156, 157, 158, 159, 160, 160, 161, 162, 163, 163, 164, 165, 166, 167, 167, 168, 169, 170, 170, 171, 172, 173, 173, 174, 175, 176, 176, 177, 178, 178, 179, 180, 181, 181, 182, 183, 183, 184, 185, 185, 186, 187, 187, 188, 189, 189, 190, 191, 192, 192, 193, 193, 194, 195, 195, 196, 197, 197, 198, 199, 199, 200, 201, 201, 202, 203, 203, 204, 204, 205, 206, 206, 207, 208, 208, 209, 209, 210, 211, 211, 212, 212, 213, 214, 214, 215, 215, 216, 217, 217, 218, 218, 219, 219, 220, 221, 221, 222, 222, 223, 224, 224, 225, 225, 226, 226, 227, 227, 228, 229, 229, 230, 230, 231, 231, 232, 232, 233, 234, 234, 235, 235, 236, 236, 237, 237, 238, 238, 239, 240, 240, 241, 241, 242, 242, 243, 243, 244, 244, 245, 245, 246, 246, 247, 247, 248, 248, 249, 249, 250, 250, 251, 251, 252, 252, 253, 253, 254, 254, 255 }; /** * A faster replacement for (int)(java.lang.Math.sqrt(x)). * Completely accurate for x < 2147483648 (i.e. 2^31)... */ static int sqrt(int x) { int xn; if (x >= 0x10000) { if (x >= 0x1000000) { if (x >= 0x10000000) { if (x >= 0x40000000) { xn = table[x >> 24] << 8; } else { xn = table[x >> 22] << 7; } } else { if (x >= 0x4000000) { xn = table[x >> 20] << 6; } else { xn = table[x >> 18] << 5; } } xn = (xn + 1 + (x / xn)) >> 1; xn = (xn + 1 + (x / xn)) >> 1; return ((xn * xn) > x) ? --xn : xn; } else { if (x >= 0x100000) { if (x >= 0x400000) { xn = table[x >> 16] << 4; } else { xn = table[x >> 14] << 3; } } else { if (x >= 0x40000) { xn = table[x >> 12] << 2; } else { xn = table[x >> 10] << 1; } } xn = (xn + 1 + (x / xn)) >> 1; return ((xn * xn) > x) ? --xn : xn; } } else { if (x >= 0x100) { if (x >= 0x1000) { if (x >= 0x4000) { xn = (table[x >> 8]) + 1; } else { xn = (table[x >> 6] >> 1) + 1; } } else { if (x >= 0x400) { xn = (table[x >> 4] >> 2) + 1; } else { xn = (table[x >> 2] >> 3) + 1; } } return ((xn * xn) > x) ? --xn : xn; } else { if (x >= 0) { return table[x] >> 4; } } } illegalArgument(); return -1; } /** * A faster replacement for (int)(java.lang.Math.sqrt(x)). * Completely accurate for x < 2147483648 (i.e. 2^31)... * Adjusted to more closely approximate * "(int)(java.lang.Math.sqrt(x) + 0.5)" * by Jeff Lawson. */ static int accurateSqrt(int x) { int xn; if (x >= 0x10000) { if (x >= 0x1000000) { if (x >= 0x10000000) { if (x >= 0x40000000) { xn = table[x >> 24] << 8; } else { xn = table[x >> 22] << 7; } } else { if (x >= 0x4000000) { xn = table[x >> 20] << 6; } else { xn = table[x >> 18] << 5; } } xn = (xn + 1 + (x / xn)) >> 1; xn = (xn + 1 + (x / xn)) >> 1; return adjustment(x, xn); } else { if (x >= 0x100000) { if (x >= 0x400000) { xn = table[x >> 16] << 4; } else { xn = table[x >> 14] << 3; } } else { if (x >= 0x40000) { xn = table[x >> 12] << 2; } else { xn = table[x >> 10] << 1; } } xn = (xn + 1 + (x / xn)) >> 1; return adjustment(x, xn); } } else { if (x >= 0x100) { if (x >= 0x1000) { if (x >= 0x4000) { xn = (table[x >> 8]) + 1; } else { xn = (table[x >> 6] >> 1) + 1; } } else { if (x >= 0x400) { xn = (table[x >> 4] >> 2) + 1; } else { xn = (table[x >> 2] >> 3) + 1; } } return adjustment(x, xn); } else { if (x >= 0) { return adjustment(x, table[x] >> 4); } } } illegalArgument(); return -1; } private static int adjustment(int x, int xn) { // Added by Jeff Lawson: // need to test: // if |xn * xn - x| > |x - (xn-1) * (xn-1)| then xn-1 is more accurate // if |xn * xn - x| > |(xn+1) * (xn+1) - x| then xn+1 is more accurate // or, for all cases except x == 0: // if |xn * xn - x| > x - xn * xn + 2 * xn - 1 then xn-1 is more accurate // if |xn * xn - x| > xn * xn + 2 * xn + 1 - x then xn+1 is more accurate int xn2 = xn * xn; // |xn * xn - x| int comparitor0 = xn2 - x; if (comparitor0 < 0) { comparitor0 = -comparitor0; } int twice_xn = xn << 1; // |x - (xn-1) * (xn-1)| int comparitor1 = x - xn2 + twice_xn - 1; if (comparitor1 < 0) { // need to correct for x == 0 case? comparitor1 = -comparitor1; // only gets here when x == 0 } // |(xn+1) * (xn+1) - x| int comparitor2 = xn2 + twice_xn + 1 - x; if (comparitor0 > comparitor1) { return (comparitor1 > comparitor2) ? ++xn : --xn; } return (comparitor0 > comparitor2) ? ++xn : xn; } /** * A *much* faster replacement for (int)(java.lang.Math.sqrt(x)). * Completely accurate for x < 289... */ static int fastSqrt(int x) { if (x >= 0x10000) { if (x >= 0x1000000) { if (x >= 0x10000000) { if (x >= 0x40000000) { return (table[x >> 24] << 8); } else { return (table[x >> 22] << 7); } } else if (x >= 0x4000000) { return (table[x >> 20] << 6); } else { return (table[x >> 18] << 5); } } else if (x >= 0x100000) { if (x >= 0x400000) { return (table[x >> 16] << 4); } else { return (table[x >> 14] << 3); } } else if (x >= 0x40000) { return (table[x >> 12] << 2); } else { return (table[x >> 10] << 1); } } else if (x >= 0x100) { if (x >= 0x1000) { if (x >= 0x4000) { return (table[x >> 8]); } else { return (table[x >> 6] >> 1); } } else if (x >= 0x400) { return (table[x >> 4] >> 2); } else { return (table[x >> 2] >> 3); } } else if (x >= 0) { return table[x] >> 4; } illegalArgument(); return -1; } private static void illegalArgument() { throw new IllegalArgumentException( "Attemt to take the square root of negative number"); } /** From http://research.microsoft.com/~hollasch/cgindex/math/introot.html * where it is presented by Ben Discoe (该邮件地址已受到反垃圾邮件插件保护。要显示它需要在浏览器中启用 JavaScript。) * Not terribly speedy... */ /* static int unrolled_sqrt(int x) { int v; int t = 1<<30; int r = 0; int s; s = t + r; r>>= 1; if (s <= x) { x -= s; r |= t;} t >>= 2; s = t + r; r>>= 1; if (s <= x) { x -= s; r |= t;} t >>= 2; s = t + r; r>>= 1; if (s <= x) { x -= s; r |= t;} t >>= 2; s = t + r; r>>= 1; if (s <= x) { x -= s; r |= t;} t >>= 2; s = t + r; r>>= 1; if (s <= x) { x -= s; r |= t;} t >>= 2; s = t + r; r>>= 1; if (s <= x) { x -= s; r |= t;} t >>= 2; s = t + r; r>>= 1; if (s <= x) { x -= s; r |= t;} t >>= 2; s = t + r; r>>= 1; if (s <= x) { x -= s; r |= t;} t >>= 2; s = t + r; r>>= 1; if (s <= x) { x -= s; r |= t;} t >>= 2; s = t + r; r>>= 1; if (s <= x) { x -= s; r |= t;} t >>= 2; s = t + r; r>>= 1; if (s <= x) { x -= s; r |= t;} t >>= 2; s = t + r; r>>= 1; if (s <= x) { x -= s; r |= t;} t >>= 2; s = t + r; r>>= 1; if (s <= x) { x -= s; r |= t;} t >>= 2; s = t + r; r>>= 1; if (s <= x) { x -= s; r |= t;} t >>= 2; s = t + r; r>>= 1; if (s <= x) { x -= s; r |= t;} t >>= 2; s = t + r; r>>= 1; if (s <= x) { x -= s; r |= t;} return r; } */ /** * Mark Borgerding's algorithm... * Not terribly speedy... */ /* static int mborg_sqrt(int val) { int guess=0; int bit = 1 << 15; do { guess ^= bit; // check to see if we can set this bit without going over sqrt(val)... if (guess * guess > val ) guess ^= bit; // it was too much, unset the bit... } while ((bit >>= 1) != 0); return guess; } */ /** * Taken from http://www.jjj.de/isqrt.cc * Code not tested well... * Attributed to: http://www.tu-chemnitz.de/~arndt/joerg.html * email: 该邮件地址已受到反垃圾邮件插件保护。要显示它需要在浏览器中启用 JavaScript。 * Slow. */ /* final static int BITS = 32; final static int NN = 0; // range: 0...BITSPERLONG/2 final static int test_sqrt(int x) { int i; int a = 0; // accumulator... int e = 0; // trial product... int r; r=0; // remainder... for (i=0; i < (BITS/2) + NN; i++) { r <<= 2; r += (x >> (BITS - 2)); x <<= 2; a <<= 1; e = (a << 1)+1; if(r >= e) { r -= e; a++; } } return a; } */ /* // Totally hopeless performance... static int test_sqrt(int n) { float r = 2.0F; float s = 0.0F; for(; r < (float)n / r; r *= 2.0F); for(s = (r + (float)n / r) / 2.0F; r - s > 1.0F; s = (r + (float)n / r) / 2.0F) { r = s; } return (int)s; } */ }