这个方法是在没有Math库的情况下使用的。
它的效率自然要比其它的逼近算法要快很多。
private final static int[] sqrtTab = {0, 16, 22, 27, 32, 35, 39, 42, 45,
48, 50, 53, 55, 57, 59, 61, 64, 65, 67, 69,
71, 73, 75, 76, 78, 80,
81, 83, 84, 86, 87, 89, 90, 91, 93, 94, 96,
97, 98, 99, 101, 102,
103, 104, 106, 107, 108, 109, 110, 112,
113, 114, 115, 116, 117,
118, 119, 120, 121, 122, 123, 124, 125,
126, 128, 128, 129, 130,
131, 132, 133, 134, 135, 136, 137, 138,
139, 140, 141, 142, 143,
144, 144, 145, 146, 147, 148, 149, 150,
150, 151, 152, 153, 154,
155, 155, 156, 157, 158, 159, 160, 160,
161, 162, 163, 163, 164,
165, 166, 167, 167, 168, 169, 170, 170,
171, 172, 173, 173, 174,
175, 176, 176, 177, 178, 178, 179, 180,
181, 181, 182, 183, 183,
184, 185, 185, 186, 187, 187, 188, 189,
189, 190, 191, 192, 192,
193, 193, 194, 195, 195, 196, 197, 197,
198, 199, 199, 200, 201,
201, 202, 203, 203, 204, 204, 205, 206,
206, 207, 208, 208, 209,
209, 210, 211, 211, 212, 212, 213, 214,
214, 215, 215, 216, 217,
217, 218, 218, 219, 219, 220, 221, 221,
222, 222, 223, 224, 224,
225, 225, 226, 226, 227, 227, 228, 229,
229, 230, 230, 231, 231,
232, 232, 233, 234, 234, 235, 235, 236,
236, 237, 237, 238, 238,
239, 240, 240, 241, 241, 242, 242, 243,
243, 244, 244, 245, 245,
246, 246, 247, 247, 248, 248, 249, 249,
250, 250, 251, 251, 252,
252, 253, 253, 254, 254, 255};
private static long adjustment(long x, long xn) {
long xn2 = xn * xn;
long comparitor0 = xn2 - x;
if (comparitor0 < 0) {
comparitor0 = -comparitor0;
}
long twice_xn = xn << 1;
long comparitor1 = x - xn2 + twice_xn - 1;
if (comparitor1 < 0) {
comparitor1 = -comparitor1;
}
long comparitor2 = xn2 + twice_xn + 1 - x;
if (comparitor0 > comparitor1) {
return (comparitor1 > comparitor2) ? ++xn : --xn;
}
return (comparitor0 > comparitor2) ? ++xn : xn;
}
static long sqrt(long x) {
long xn;
if (x >= 0x10000) {
if (x >= 0x1000000) {
if (x >= 0x10000000) {
if (x >= 0x40000000) {
xn = sqrtTab[(int) (x >> 24)] << 8;
} else {
xn = sqrtTab[(int) (x >> 22)] << 7;
}
} else {
if (x >= 0x4000000) {
xn = sqrtTab[(int) (x >> 20)] << 6;
} else {
xn = sqrtTab[(int) (x >> 18)] << 5;
}
}
xn = (xn + 1 + (x / xn)) >> 1;
xn = (xn + 1 + (x / xn)) >> 1;
return adjustment(x, xn);
} else {
if (x >= 0x100000) {
if (x >= 0x400000) {
xn = (long) sqrtTab[(int) (x >> 16)] << 4;
} else {
xn = (long) sqrtTab[(int) (x >> 14)] << 3;
}
} else {
if (x >= 0x40000) {
xn = (long) sqrtTab[(int) (x >> 12)] << 2;
} else {
xn = (long) sqrtTab[(int) (x >> 10)] << 1;
}
}
xn = (xn + 1 + (x / xn)) >> 1;
return adjustment(x, xn);
}
} else {
if (x >= 0x100) {
if (x >= 0x1000) {
if (x >= 0x4000) {
xn = sqrtTab[(int) (x >> 8)] + 1;
} else {
xn = (sqrtTab[(int) (x >> 6)] >> 1) + 1;
}
} else {
if (x >= 0x400) {
xn = (sqrtTab[(int) (x >> 4)] >> 2) + 1;
} else {
xn = (sqrtTab[(int) (x >> 2)] >> 3) + 1;
}
}
return adjustment(x, xn);
} else {
if (x >= 0) {
return adjustment(x, sqrtTab[(int) x] >> 4);
}
}
}
return -1;
}